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Despite growing interest in the application of machine learning (ML) for accident 
prediction and safety analysis, limited research has explored its use in predicting 
anatomical injury risk among highway workers. This study addresses this gap by 
developing a predictive model capable of classifying body parts most susceptible to 
injury in highway-related incidents. Positivism and interpretivism set the theoretical 
foundations for this study. The sequential exploratory mixed method adopted involved the 
preprocessing of accident datasets, feature selection and model evaluation using 
established performance metrics. A Support Vector Machine (SVM) algorithm was 
employed as the primary classifier, with its performance benchmarked against three 
comparative models: Naïve Bayes (NB), Random Forest (RF) and a Recurrent Neural 
Network (RNN). Analysis results showed that variables such as ‘region’, ‘site/project’, 
‘event type’, ‘vehicles involved’ and ‘location’ were very significant in predicting bodily 
injuries. Moreover, the findings also indicate that the SVM model, when optimally tuned, 
yields competitive classification accuracy, with RF and RNN models showing promising 
supplementary performance. This study introduces a novel framework for body-part 
injury classification within high-risk highway environments tailored for highway workers. 
This is the first study to use real life datasets specifically collected from highway worker 
injuries and departs from previous studies which have focused on drivers, pedestrians 
and the road only. 
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1 Introduction 
Project sites and locations for highway operations normally present hazardous elements which could 
be detrimental to the safety of highway workers (Eseonu et al., 2018). However, there is the probability 
that exposure to such hazardous elements could engender body part injuries (e.g. arms, head, legs or 
torso) which could impact the overall health and wellbeing of workers (Alkaissy et al., 2023). In several 
instances, injury occurrences on highway project locations have rendered victims incapacitated hence, 
exposing employers to cost of compensation claims and a significant dent in organisational reputation 
(Zhang et al., 2023). Such negative consequences present a need for drawing insights from factors that 
contribute to injury occurrences and proMering tailored solutions to proactively prevent such incidents 
(Abukhashabah et al., 2020; Bortey et al., 2024a). In a survey conducted by Headway (2020), head 
injuries accounted for 20% of all workplace injuries. According to Eurostat (2023) injuries to the upper 
limbs (shoulders, arms and hands) accounted for 38.3% of the total number of non-fatal accidents at 
work while the lower limbs (hips, legs and feet) recorded 29.1% of body parts aMected in injuries. 

Incident data from the highway accident reporting tool (HART) database in the UK (administered by 
National Highways – A UK government company) presents a number of reported injury events with the 
associated body parts that were aMected during the injury (Bortey et al., 2024b). Analysing these injuries 
cases could provide an understanding of the most frequent body part aMected, which could in turn 
present an indication of the type of work or activity that causes such body parts to be inflicted (Lo et al., 
2020). Furthermore, the body part aMected could give insight to which injuries were more likely to be 
fatal and has the potential of resulting in more grievous consequences (Parra-Dominguez et al., 2015). 
For example, an injury to the head could result in a more fatal outcome as compared to an injury to leg 
(Dumrak et al., 2013). Such knowledge presents an important opportunity for safety managers to devise 
suitable control measures to reduce risks posed (Sarvari et al., 2024).   

Although a few studies have sought to uncover the determinants of injuries aMecting various body parts 
(cf. Dumrak et al., 2013; Lo et al., 2021), an insuMiciency of data and absence of detailed 
comprehension of the relationships that exist between these factors have impeded the development of 
accurate predictive models that could classify these injuries into body parts likely to be aMected 
(Kashani et al., 2022). In cases where data could be accessed, the quality of existing data is sub-optimal 
(Xu & Zou, 2021). However, data is crucial in the development of both stochastic and deterministic 
predictive models (Bortey et al., 2022). 

Understanding significant factors that are essential to injury occurrences and developing predictive 
models which could identify underlying patterns and trends prior to an injury occurring is a significant 
step towards enhancing safety risk management (Amini et al., 2022). Such a model would enable 
evidence-based decision making and contribute to prioritising and maximising the utility of available 
resources (Alawad et al., 2019).  Machine learning (ML) has been utilised in many industries to predict 
injury including construction, manufacturing and logistics. However, the literature (Eseonu et al., 2018b; 
Bortey et al., 2024) reveals that the application of ML for enhancing safety in highway operations 
(particularly for highway traMic oMicers (HTOs)) has been scant. For example, Alshboul et al. (2024) used 
artificial intelligence (AI) and ML to empirically explore predictive maintenance in concrete 
manufacturing. Similarly, Kang & Ryu (2019) employed a random forest (RF) algorithm to identify key 
determinants of construction accident types, uncovering that human factors, lack of supervision and 
insuMicient protective equipment were major contributors. In another study, Ekanem (2025) used ML to 
forecast the severity of road traMic accidents and significant insights that could be derived from them. 
In a highway setting, Bortey et al., (2024a) and Ajayi et al., (2020) predicted the risk levels involved in 
highway operations and identified relevant features that contributes to increasing safety risk 
challenges. Collectively, these studies reveal the potential of applying ML in accident prediction and 
analysis, and the significance of identifying and choosing pertinent features that could positively impact 
and prediction model developed. However, there remains a research gap in using ML to determine which 
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body regions are most at risk during highway operations. A gap that this present research addresses and 
contributes to knowledge.  

This paper therefore aims to develop a predictive model capable of classifying body part injuries using 
a support vector machine (SVM) algorithm. Three ML algorithms were used to compare and benchmark 
the performance of the SVM algorithm viz.: naïve bayes (NB); RF, an ensemble learning algorithm that 
employs all three ML algorithms; and a deep neural network (DNN) model known as recurrent neural 
network (RNN). Associated research objectives are to identify the most eMicient ML algorithm and the 
most suitable parameters for body part injury classification. This study also uses statistical tests such 
as chi-square test to investigate significant relationships between the target variable (i.e. body-part 
aMected) and the independent variables sourced from extant literature (e.g. weather, experience, age, 
etc.) to determine the most pertinent variables which influence the classification of body part injuries. 
Research questions framed to guide this work are i) what are the most important predictors of body 
parts likely to be aMected in an injury?; and ii) what ML model can be eMective for classifying body parts 
likely to be aMected in an injury? The research presented in this seminal paper is not a fully developed 
and deployed safety prediction model but instead focuses on developing a proof-of-concept ML model 
for risk assessment in highway operations. 

2 Methodology 
This study follows the methodological steps detailed by Saunder et al. (2016) to develop a proof-of-
concept predictive model capable of forecasting body parts likely to be aMected in injurious incidents. 
An overarching epistemological framework, combining positivism and interpretivism, served as the 
philosophical foundation for this research (Alharahsheh & Pius, 2020). Deductive and inductive 
reasoning (Edwards et al., 2020) was employed to first explore the relationships between variables and 
obtain insights from the data before training and testing ML algorithms to ascertain the best performing 
model. Using incident data obtained, a sequential exploratory mixed method approach (Roberts et al., 
2021) was adopted to gain understanding of the trends and patterns presented by the qualitative data. 
Insights from this initial phase informed the subsequent quantitative phase, where the variables are 
coded and used to build a ML prediction model. A case study strategy was then employed to provide 
contextual depth and real-world relevance to the analysis (Bayramova et al., 2023). Such a strategy 
allowed for a focused examination of safety and incident patterns in highway environments.  A 
retrospective time horizon was adopted for this study because all data points were acquired from 
historical data contained within the case studies analysed (Kiyatkin et al., 2023). The data was pre-
processed using python programming tools to handle missing data and clean out duplicates. 
Methodological steps adopted are elaborated in Figure 1 while techniques and procedures (adopted in 
each of the key stages viz.: data collection; data pre-processing; training and testing; the modelling 
process; and performance and testing) are detailed in the subsequent subsections. 

2.1 Data collection 

A comprehensive dataset comprising 72,811 recorded highway incident cases from 2017 to 2022 was 
obtained to investigate the contributing factors to injuries sustained during past highway operations 
conducted by highway workers. The dataset includes 23 variables, of which 22 are independent features 
and one is the target variable (body part aMected), categorised into 13 distinct classes. Independent 
variables used (refer to Table 1) represent diverse organisational, environmental, temporal and 
demographic characteristics. These include factors such as region, project site, date and time of event, 
weather and visibility conditions, experience in current role, type of work and project risk level. 
Independent variables were selected based on their relevance to previous research in occupational 
incident analysis (Bortey et al.et al., 2024a) and the strategic objective of identifying patterns that may 
enhance predictive accuracy in safety risk modelling for highway operations. 
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Figure 1: Methodological process. 
 

Table 1: Variables in dataset. 

Independent Variable Data Type Meaning References 
PublishedRecordId Int ID number for data point (Ebrahimvandi et 

al., 2022) 
Region Categorical The region where project is based (Chandar et al., 

2020) 
Site/Project’ Categorical The site where project is based (Huang et al., 2020) 
Date and Time of Event Datetime The date and time incident occurred (Bai et al., 2021) 
vehicles involved? Categorical Are there vehicles involved in the project (yes/no) (Alozi and Hussein, 

2022) 
Type of Person Categorical The status of the individual’s employment or visit 

(employee, contractor, member of public, customer) 
(Rajini et al., 2018) 

Location Categorical The location of the project site  (Huang et al., 2020) 
Did this event occur on the 
SRN (strategic road 
network)? 

Categorical Is incident a strategic road network related? (Yes/No) (Bortey et al., 
2024a)  

Experience in Current Role Integer The number of years worker has been working in that 
position 

(García-Rois et al., 
2021) 

Age Range Integer The age of the worker (Bortey et al., 
2024a) 

Weather / Visibility Categorical The visibility at time of incident (rainy, stormy, clear, 
windy) 

(Abohassan et al., 
2022) 

Potential Severity Rating Integer What the possible impact of incident could be (1-25) (Kashani et al., 
2022) 

Actual Severity Rating Integer What the actual impact was (1-25) (Amini et al., 2022) 
Month Integer The month of incident  (Hale et al., 2018) 
Season Categorical The season of the incident (winter, summer, spring, 

and autumn) 
(Ajayi et al., 2020) 

Type_of_work Categorical The type of work being undertaken (traffic 
management, highway operation, not applicable) 

(Choi et al., 2020) 

Year Categorical Year of incident  
Day_of_week Categorical The day of the week incident happened (Monday-

Sunday) 
(Al-Kasasbeh et al., 
2021) 
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Time_of_day Categorical The time of the day (morning, afternoon, evening, and 
night) 

(Al-Fedaghi, 2020) 

‘Injury occurrence Categorical The likelihood of an injury occurring (True/ False) (Amini et al., 2022) 
‘Injury Type’ Categorical The types of injury that could occur (cut/laceration/ 

sprain/strain, bruising, amputation. 
Musculoskeletal, abrasion) 

(Baker et al., 2020) 

Project risk level’ Categorical The likely severity of project risk (high, medium, low) (Amini et al., 2022) 
Event Type’ Categorical The kind of incident likely to occur (Personal 

illness/injury, undesirable circumstance, security, 
environment, infrastructure) 

(Bortey et al., 
2024b) 

Dependent variable    
‘Part of Body Affected’,  Categorical The part of the body likely to be affected (head, hand, 

waist, leg etc.) 
((Ajayi et al., 2020)  

 

2.2 Data Pre-Processing  

Several preprocessing techniques were applied to enhance the eMiciency and facilitate the modelling 
process. Initially, to address missing values, the ‘SimpleImputer’ class from scikit-learn library (Hussain 
et al.et al., 2024) provided a strategy parameter, which enabled the specification of variables to impute 
missing categorical values with the mode (i.e. most frequently occurring number). This method 
significantly improved the predictive power of the final models despite its computational demands. The 
simple imputation method has been used by several studies to fill in missing data in ML tasks (Abd Halim 
et al., 2020; Hussain et al., 2024). 

The values in the ‘body part aMected’ column in Table 1 had duplicate entries which posed challenges 
for data analysis and interpretation. For example, entries such as ‘back/spine', 'lower arm, hip, hand, 
back/spine', ‘hip’ were observed. In this example, the values ‘back/spine’ and ‘hip’ can be seen to have 
been duplicated leading to an inaccurate representation of the true count of unique values. To address 
duplicate entries, the first four letters of each entry was examined, and the same value was assigned to 
entries with identical prefixes. The observation made by examining the first four letters of the duplicate 
entries was that they possessed common prefixes. Therefore, by focusing on the first four letters, the 
commonalities were eMectively captured and consolidated. Hence, the unique values were reduced 
from 179 to 13 unique entries. Assigning the same value to entries sharing a common prefix resulted in 
the reduction of the unique values in the ‘body part aMected’ column without any loss of essential 
information conveyed by the original values. Merging the duplicate entries improved the clarity and 
interpretability of the data, hence facilitating meaningful insights and promoting reliable analysis of 
results. 

Additionally, if two features were found to have a high p-value (Alozi & Hussein, 2022) one of the features 
was dropped in a process known as dimensionality reduction (Jia et al., 2022). This is because, the 
model’s complexity increases with a high dimensional feature set (Huang et al., 2018). Also, some of the 
variables may be redundant and might exhibit multicollinearity, thereby undermining the statistical 
significance of the independent variables (Hasan & Abdulazeez, 2021). 

2.3 Training and Testing 

After the data was pre-processed, the dataset was split into two sets at random: 1) the training set, 
which was used to train the model and rank the significance of the variables for the feature selection 
process); and 2) the test dataset, which was used to verify the performance of the prediction model. 
This strategy sought to reduce any variance that might be produced by performing a simple train test 
split (Bichri et al., 2024). The 70-30 split was chosen to ensure that the model has sufficient data to learn 
from while reserving a significant portion for an unbiased evaluation (c.f. Naseer et al., 2020). To 
optimise the performance of the models, the values of the parameters for each of the algorithms were 
controlled by suitably chosen grids detailed in the modelling process. 
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2.4 Modelling Process 

An SVM model was created and fit to the training data in the model experiment. The kernel applied was 
the polynomial kernel, the probability was set to ‘true’ with a random state of ‘42’. DiMerent experiments 
were also conducted for three other ML models namely, RF, NB and the ensemble learning method to 
compare their performance against that of SVM model. A DL model was also used to perform 
classification to ascertain whether a neural network would have a better performance on the data as 
compared to ML models. The models were then validated using a technique called k-fold cross-
validation (Malakouti et al., 2023) that involved using the procedure in k number of tests and randomly 
dividing the data into k folds. The value of k in this experiment was randomly chosen as ten. The 
performance of each model was then compared, and the top performing model was identified.  

The algorithmic modelling steps are:   

 

Input: Pre-processed dataset 𝐷 

Set Parameters: 

kernel ← poly 

probability ← True 

random_state ← 42 

k ← 10 for k-fold cross-validation 

 

Initialise Models: 

𝑀!← SVM_Model ← Support Vector Machine with above parameters 

𝑀"← RF_Model ← Random Forest 

𝑀#← NB_Model ← Naive Bayes 

𝑀$← Ensemble_Model ← Chosen ensemble learning method 

𝑀%← RNN_Model ← Recurrent Neural Network for classification 

 

Create k-Folds: 

For i from 1 to k: 

Use fold Fi as validation set; 

Use remaining k-1 folds as training set; 

Train the model on training set; 

Evaluate performance on validation set; 

Store performance metric (e.g. accuracy, F1-score); and 

Compute average performance metric over k folds; 

 

Mathematically, this is represented as: 

Splitting the dataset 𝐷 into 𝑘 equally sized folds 𝐹!, 𝐹", … , 𝐹&; and 

For each model 𝑀 ∈ {	𝑀!, 𝑀", 𝑀#, 𝑀$, 𝑀%}. 
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For 𝑖 = 1	𝑡𝑜	𝑘: 

Let 𝑉 =	𝐹'	(*+,'-+.'/0	12.) V; 

Let 𝑇 = 𝐷/𝐹'	(.4+'0'05	12.); 

Train 𝑀 on 𝑇; 

Evaluate 𝑀 on 𝑉; 

Store evaluation metric 𝐸'; and 

Compute average performance over k folds: 𝐸4 = !
&
∑ 𝐸'&
'6! . 

Compare the average performance of all models on the average metric 𝐸4  

𝑀∗ = arg 𝐸4(𝑀)8
9+:  

Select and report the model with the highest average performance 

Output: Best-performing model based on cross-validation results 𝑀∗ 
 

2.5 Performance Evaluation 

To identify the best performing model among the set of ML models utilised, a comprehensive set of 
classification metrics was adopted to evaluate the performance of each model. The most commonly 
used metric for evaluating ML models is the accuracy score (Agarwal et al., 2021). However, in cases 
where the data shows instances of class imbalance, accuracy score alone can be misleading 
(Fernández et al., 2018). Therefore, in addition to the accuracy score metric, other metrices viz; 
precision, recall, F1-score and Area Under the Receiver Operating Characteristic Curve (AUROC) were 
employed to give a more detailed indication of the models’ performance. 

Accuracy score presents a general sense of overall model performance by evaluating the ratio of 
correctly predicted cases out of the total predictions (equation 1). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ;<=;>
;<=;<=?<=?>

                                                     (1) 

Precision gives an indication of how reliable the positive classifications are. Therefore, it examines the 
ratio of true positive predictions out of all the positive predictions made by the model (equation 2).  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 ;<
;<=?<

                                                          (2) 

Recall measures how eMective the model is in capturing the relevant instances. Hence, it evaluates the 
model’s ability to correctly identify all the positive cases which are actually positive (equation 3).  

𝑟𝑒𝑐𝑎𝑙𝑙 = 	 ;<
;<=?>

                                                                (3) 

The F1-score provides a balance between the precision and the recall and is otherwise known as the 
harmonic mean of the precision and recall (Yacouby & Axman, 2020). It is very useful when seeking a 
trade-oM between false positives and negatives (equation 4).  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 	 "(@42A'1'/0∗42A+,,)
@42A'1'/0=42A+,,

                                      (4) 

The AUROC helps to assess the model’s ability to diMerentiate between the distinct classes across 
various classification thresholds (Amini et al., 2022). The higher the AUROC value, the better its ability 
to distinguish. This is known as the discriminative performance of the model (Anagnostakis et al., 2024). 
Due to the multi-class nature of the classification task in this study, the use of the AUROC metric is 
essential in objectively evaluating the performance of each model. 
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3 Results – Key Findings 
Data for the target variable was explored and visualised to aid in obtaining a better understanding of its 
structure and nature. Visualisation also sought to help uncover an trends and patterns that may be 
hidden in the data. Figure 2 presents the distribution of body part aMected from various personal illness 
and injury incidents. The category ‘not applicable’ represents incidents which did not lead to injuries 
were the most occurring. However, for incidents which injuries had ensued, the most frequently 
reported body part aMected on highway project site/locations was the leg/knee (f=338 or 17.2%). This 
was followed by: lower arm including wrist and hand (f=275 or 14%); head (f=207 or 10.5%); ankle/foot 
(f=204 or 10.3%); finger/thumb (f=198 or 10.1%); mental/psychological (f=163 or 8.3%); back/spine 
(f=156 or 7.9%); neck/shoulder (f=126 or 6.4%); upper arm including elbow (f=97 or 4.9%);, 
chest/stomach (f=74 or 3.8%); eye/ear (f=58 or 2.9%); hip (f=21 or 1.1%); and lungs/throat (by chemical) 
(f=16 or 0.8%). Evidently, the chest/stomach area, eye/ear, hips and lungs/throat were the least recorded 
body part involved in injuries. 
 

 
Figure 2: Distribution of body parts a=ected by injuries. 

 

3.1    Feature Importance and Dimensionality Reduction (Chi-square test) 

Table 2 presents the independent variables and their associated chi-square statistic and p-value. The 
chi-square statistic measures the diMerence between the observed frequencies and the expected 
frequencies if two categorical variables were deemed associated. The greater the diMerence between 
observed and expected frequencies, the greater the values of the chi-square statistic. Therefore, a high 
chi-square value indicates an association between the variables while a low value indicates 
independence. In contrast, the smaller the p-value (i.e. ˂0.05), the greater the chance of an association 
between the variables, hence rejecting the null hypothesis of independence. 
 

Table 2: Chi-square table. 

Variables Chi-square (CS) P-value (PV) 
Region                                           2197.618813   5.218114e-259 
Site/project                   15773.829953    0.000000e+00 
Event type                          51244.164903    0.000000e+00 
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Vehicles involved                   1093.540835   1.392244e-225 
Type of person                         34.574609    6.718692e-01 
Location 2774.114106    0.000000e+00 
Did this event occur on the SRN?      179.344500    2.308856e-31 
Injury type                        114009.334610    0.000000e+00 
Weather/visibility                  248.317880    3.150706e-23 
Season   39.119176    4.645261e-01 
Type_of_work                           34.574609    1.211591e-01 
Injury occurrence                   50650.254417    0.000000e+00 
Project risk level                  35544.383540    0.000000e+00 
Day_of_week                            77.599370    4.915031e-01 
Time_of_day                             77.518971    1.241510e-02 

 

Two separate heatmaps (refer to Figure 3a and 3b) were created for the chi-square statistics and the p-
values with each heatmap displaying the values for each variable, with annotations showing the 
numerical values. A cool warm colour map was used to represent the values, with blue colours 
indicating lower values and red colours indicating higher values. 
 

 
Figure 3a: Chi-square statistics for categorical variables.  

 

 
Figure 3b: P-value for categorical variables. 
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The variables ‘type of person (PV=0.67)’; ‘day of week (PV=0.49)’; ‘season (PV=0.46);  ‘type of work 
(PV=0.12)’ had p-values ˃ the significant level of 0.05. Similarly, the variables with higher p-values, also 
had relatively very small chi-square statistic value indicating that there is no statistically significant 
association between the ‘type of person’, ‘season’, ‘day of week’ and ‘type of work’ variables and the 
target variable (body part aMected). Therefore, the null hypothesis of non-association is not rejected. 
However, the variables, ‘region’, ‘site/project’, ‘event type’, ‘vehicles involved?’, ‘location’, ‘did this event 
occur on the SRN?’, ‘injury type’, ‘weather / visibility’, ‘season’, ‘injury occurrence’ and  ‘project risk level’ 
had large chi-square statistics which indicates a substantial discrepancy between the observed and 
expected frequencies, and a very low p-value which suggests that this association is highly unlikely to 
be due to chance alone. Therefore, the null hypothesis of non-association is rejected. These variables 
were then adopted as input variables in the modelling process.  

3.2    Model Performance 

Table 3 presents the performance metrics, including precision, accuracy, recall, F1-score and AUROC, 
for each of the diMerent ML models used to classify the part of body likely to be aMected in the event of 
an injury occurrence. The performance of the models was evaluated using the 10-fold cross-validation 
(Malakouti et al., 2023). In each of the ten iterations, the dataset was randomly partitioned into ten equal 
subsets or “folds”, one-fold was set aside as the validation set and the model was trained on the 
remaining nine folds. This process was repeated such that each fold served once as the validation set, 
ensuring all data points were used for both training and validation across the iterations. The results 
showed that SVM outperformed all the other models in terms of accuracy.  
 

Table 3. Classification results 

Model  Accuracy score (%) Precision (%) Recall (%) F1-score (%) AUROC (%) 
SVM 99 98 97 97 98 
RF 96 94 94 94 95 
NB 91 92 91 92 91 
EL 98 97 98 98 97 
RNN 95 94 92 94 94 

 

Based on the overall performance of the models presented in Table 3, SVM is the best performing model 
in terms of accuracy (99%), AUROC (99%), indicating an almost precise level of consistency in 
classification. Ensemble learning had the second highest performance with an accuracy (98%) and 
AUROC (97%). RF ranked third with an accuracy (96%), AUROC (95%), followed by RNN, with accuracy 
(95%), AUROC (94%). NB was the least performing model with accuracy (91%) and AUROC (91%).    

3.2.1 Performance of Each Class Using ROC Curve  

Figure 4 presents the ROC curve which describes how well each class of the target variable performed 
in the experiment for the best performing algorithm which was the SVM algorithm. Using the one-vs-rest 
multi-class algorithm, the results show that, each class of the target variable had near perfect 
prediction for body part likely to be aMected. This shows, the accuracy of 99% for the SVM was not 
influenced by biased prediction of the majority class but rather has a balanced high prediction ability 
across each of the classes. Such high AUC scores suggest that the model is highly eMective at multi-
class classification and is capable of distinguishing between categories with minimal overlap. The tight 
clustering of all curves near the top-left corner of the plot also implies low false positive rates and high 
true positive rates across board. 
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Figure 4: ROC curve for body part affected. 

4 Discussion 
An exploration of the target variable presented the top five body parts usually impacted in an injury as: 
i) leg/knee; ii) lower arm including wrist and hand; iii) head; iv) ankle/foot; and v) finger/thumb. This could 
give an indication of the type of activities or incidents that must be carefully considered, prioritised and 
evaluated during highway operations. The type of incident or activity that leads to an injury can be 
inferred from the body part aMected (Oyedele et al., 2021). Injury prevention resources must be 
prioritised for these areas to proactively pre-empt these injuries (cf.). Table 4 provides details of such 
incidents which could aMect the body part stated.  

Abukhashabah et al., (2020) found that falling equipment caused 27% of head injuries at the workplace 
hence, the provision and use of appropriate PPEs was pertinent to reducing such injuries. However, it is 
far better to eliminate the risk of falling equipment altogether under the hierarchy of control theoretical 
concept (Almaskati et al., 2024). Ahuja et al. (2024) also recognised that heavy objects falling on the 
foot, or heavy machinery running over the foot could be some examples of incidents that could cause 
injuries to the ankle or the foot with severe damages to the muscle or tissues. Alessa et al. (2020) found 
that handling equipment and climbing scaMolds are activities which could contribute to finger/thumb 
injuries. These studies support the postulations of incidents likely to be the causes of body part injuries 
in this study. 

Table 4: Inferred incidents from body parts injured. 

Body part Incident/activity References  
Leg/Knee Slips, falls or trips on uneven surfaces. 

Falls from heights. 
     (Xie et al., 2021; Ishimaru et 
al., 2024) 
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Struck by falling objects. 
Twisting or hyperextension during physical activities. 
Overuse injuries from repetitive motions. 

Lower arm 
including wrist and 
hand  

Accidents involving machinery or tools. 
Impact injuries from heavy objects. 
Repetitive strain injuries from typing or manual labour. 
Cuts or lacerations from sharp objects. 
Fractures or sprains from falls or collisions. 

(Choi et al., 2020; Edwards et 
al., 2020) 

Head  Falls from heights or slips. 
Struck by moving objects or equipment. 
Vehicle accidents. 
Impact injuries from falling debris and equipment. 

(Hayes et al., 2025) 

Ankle/foot Twisting or rolling the ankle on uneven ground. 
Falls or slips on slippery surfaces. 
Dropping heavy objects on the foot. 
Crushing injuries from machinery or equipment. 
Sprains or strains from sudden movements. 

(Ahuja et al., 2024; Lee et al., 
2025) 

Finger/thumb Pinching injuries from closing doors or machinery. 
Cuts or lacerations from sharp objects. 
Crush injuries from heavy objects or equipment. 
Impact injuries from striking objects. 
Fractures or dislocations from accidents or falls. 
Climbing scaffolds/ladder. 

(Alessa et al., 2020) 

 

Analysis of association conducted using the chi-square test of association showed that, the 
independent variables ‘region’, ‘site/project’, ‘event type’, ‘vehicles involved’, ‘location’, ‘did this event 
occur on the SRN’, ‘injury type’, ‘weather / visibility’, ‘season’, ‘injury occurrence’ and  ‘project risk level’ 
were the most significant variable in predicting a body part likely to be aMected by an injury. This finding 
answers the research question ‘what the most important predictor of body parts are likely to be aAected 
in an injury?’ The finding is in congruence with findings of other studies that showed that ‘project type’, 
‘location’, ‘experience’, ‘day’ and ‘season’ were influential to predicting body part injuries (Ajayi et al., 
2019; Oyedele et al., 2021). Applying ML to predict body part injuries and the incidents that cause them 
presents an innovative opportunity to tackling health and safety risks, particularly in high-risk 
environments such as highway construction and maintenance. By analysing historical injury records 
and associating specific types of incidents like slips, falls or machinery accidents with injuries to 
particular body parts, ML models such as SVM, RF and RNN can detect significant patterns and 
correlations within the dataset. A nuanced understanding of the root causes of injuries could be a 
significant step to unearthing pertinent insights. Insights obtained could also help to identify 
combinations of risk factors such as location, project type, season and equipment used that increase 
the probability of injury occurrences for individual operations. For instance, if the model identifies a 
strong link between poor visibility and increased incidence of ankle injuries during winter roadworks, 
targeted adjustments such as better lighting and traction footwear can be introduced to reduce risks. 
Moreover, the costs for this investment can be justified by comparing the benefits to be accrued from 
control measures implemented when compared to the tangible and intangible costs incurred by an 
incident. Such costs can be considerable and for a fatality, this can run into several millions.  

The results for model development indicate that SVM achieved the highest accuracy score of 99%, 
followed closely by Ensemble Learning (EL) with 98%. RF and RNN attained accuracy scores of 96% and 
95%, respectively, while NB achieved an accuracy score of 91%. Across precision, recall and F1-score 
metrics, SVM consistently demonstrated strong performance, maintaining precision, recall and F1-
score values above 97%. RF, EL and RNN also exhibited competitive performance across these metrics, 
with precision, recall, and F1-score values ranging from 94% to 98%. NB, while slightly lower in 
performance compared to other models, still demonstrated reasonable precision, recall, and F1-score 
values of around 91% to 92%. These results suggest that SVM is the most reliable classifier for this task, 
providing both high accuracy and balanced performance across multiple evaluation metrics. The strong 
performance of RF, EL and RNN indicates that these models are also suitable alternatives, while NB may 
be less optimal for fine-grained injury classification. The high performance across all models 
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demonstrates the predictive value of the selected variables, specifically, the incident and site features 
as presented in the results. 

The SVM outperforming all other models could be due to its ability to eMectively model linear decision 
boundaries and handle high-dimensional feature spaces (Park et al., 2020). In this thesis, SVM could 
have utilised the intrinsic linear separability of the data, resulting in robust predictions (Guan et al., 
2022). EL, which combined multiple models (SVM, RF, NB) to improve performance, also demonstrated 
a strong performance by making use of the diverse strengths the of individual models to enhance 
prediction accuracy (Mienye et al., 2020). RF and RNN, while slightly lower in accuracy compared to 
SVM and Ensemble Learning, still exhibited competitive performance, indicating their capability to 
capture complex patterns in the data (Jung et al., 2020). This could also be attributed to SVM having 
fewer hyperparameters to tune as compared to RNN and ensemble learning, which can simplify the 
model selection and tuning process. In the experiment, the hyperparameters of SVM were well-
optimised for the data by exploring diMerent combinations of hyperparameters to demonstrate which 
combination was most eMective. The superior performance of SVM compared to RNN and Ensemble 
learning, could therefore be attributed to the optimal hyperparameter utilised as RNN and ensemble 
learning are more sensitive to hyperparameter settings (Farsi, 2021; Mohammed & Kora, 2023). 

The predictive model developed has broad applicability beyond highway projects. Fields such as 
manufacturing, mining, healthcare and logistics where workers are exposed to physical hazards can 
adopt this model and tailor it with industry variables and characteristics to forecast injury patterns and 
design safer workflows. As organisations embrace such digital transformations, using ML to pre-
emptively manage occupational risks could become a cornerstone of modern workplace safety 
strategies. Due to the safety-critical nature of highway operations, issues of model interpretability, 
transparency and ethical use are essential considerations (Jung et al., 2020). As this study focuses on 
predictive feasibility the use of models such as SVM and RF enables post-hoc interpretability through 
feature importance analysis and decision boundary inspection (Oyedele et al., 2021). Future work will 
incorporate formal explainable AI techniques (e.g. SHAP or LIME) alongside ethical validation 
frameworks (Mohammed and Kora, 2023) to support fairness, accountability and responsible adoption 
in safety-critical environments. 

4.1    Practical Implications and Proposed User Interface 

In highway operations, accurate prediction of body parts which could potentially be injured is a 
significant measure for a learning organisation (Oyedele et al., 2022). Such a prediction will invariably 
influence the implementation of preventive measures and could be pertinent in developing tailored 
interventions to reduce highway safety injuries. The high accuracy of the ML models presents robust 
and eMective decision-making tools which will enable safety managers prioritise resources and 
implement safety protocol which will significantly minimise injurious incidents. Using ML to analyse 
body part injuries in a predictive model could oMer insights into the relationship between certain 
variables such as environmental, demographic, traMic patterns or location and specific types of injuries 
such as spine/back injuries, head trauma etc. A detailed understanding of such relationships enables 
proactive measures which facilitate the prevention of such injuries. 

By identifying the factors that are most predictive of body-part injuries, the model can help support the 
development of targeted safety policies and interventions for highway workers. For example, agencies 
could prioritise safety training, equipment allocation and site supervision in locations or conditions 
identified as high risk. While these policy recommendations are conceptual at this stage, they illustrate 
how predictive insights can contribute to evidence-based occupational safety planning. They can also 
inform broader health and safety regulations in high-risk highway environments. 

In the highway industry, contractors and subcontractors are often engaged by highway agencies (e.g. 
National Highways) to undertake various projects, yet they operate independently of direct oversight by 
these agencies (Kshraf et al., 2022; Bortey et al., 2025). Consequently, ensuring consistent safety 
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standards across all contracted entities poses a challenge, as each contractor may adhere to varying 
safety policies and practices (Mbachu, 2008). Nonetheless, insights gained from body part injury 
prediction endeavours can be disseminated to contractors, serving as foundational knowledge for the 
development of principal safety guidelines applicable to all contractor companies. Relevant 
information such as anonymised injury prediction data and best practices could be obtained and can 
enhance collaboration between highway industry stakeholders by sharing insights derived from the data 
in the bid to improve safety eMorts (Deep et al., 2022). Figure 5 gives a representation of the proposed 
user interface for the body part prediction. 

This representation presents an example of how the user interface of the body part prediction tool would 
be designed. As a proof-of-concept, this prediction tool will accept input variables (such as location, 
worker profile, weather conditions etc.) through the user interface. The ML algorithm will process the 
information and predict the injuries type, specifically, the body parts most likely to be aMected in an 
injury. A core feature of the user interface is the integration of predictive analytics using a human body 
visualisation. This feature will emphasise the vulnerable body parts (e.g., hands, knees, wrists) based 
on the modelled risk profile. The tool also oMers a descriptive analytics dashboard, which analyses the 
data and provides insights into injury distribution across seasons, types of incidents recorded within a 
given month, work activity proportions and accident frequency rates (AFR) over time. Future 
developments could include the input of leading indicators (Bayramova et al., 2023) to measure the 
likelihood (probability) of incidents occurring under various given scenarios and perhaps more 
importantly, derived control measures that could be implemented to control the risk(s) posed. The 
adoption and use of such as system will enable proactive safety management (Bortey et al., 2024b).  
Consequently, the system will provide safety managers (especially non-technical users) data-driven 
evidence that inform training, operation scheduling and the deployment of appropriate personal 
protective equipment (PPE) (Huang et al., 2018). 
 

 
Figure 5: Proposed user interface for the body part prediction. 
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5 Conclusions 
In contemporary times, ML has become an indispensable technique and has proved to be of utmost 
significance in curtailing injuries in various fields of occupational health and safety. This paper proposes 
a novel computational and ML model for determining body parts likely to be aMected in an injurious 
incident. Five diMerent algorithms (namely, SVM, RF, NB, EL, RNN) were employed to classify the body 
parts. The performance of each model was evaluated and compared based on five metrices (viz. 
accuracy score, precision, recall, F1-score and AUROC). The data is balanced using the SMOTE 
algorithm to prevent the models from being biased towards the majority class, which can aMect 
performance accuracy. The parameters of each model are tuned to optimise their performance and 
evaluated with a train test split technique which reserves 30% of the data for testing purposes. The 
experimental results show that, SVM performed better than the three other ML algorithms i.e. RF, NB 
and EL. EL however had a slight advantage over RF and NB because it leveraged the strengths of both 
models to achieve a slightly better performance. This study acknowledges overfitting and data leakage 
as potential risks. Despite the precautions taken to mitigate such risk, the structured nature of the 
dataset and the consolidation of body-part labels may contribute to high accuracy scores. Therefore, 
these results should be interpreted as indicative of the model’s feasibility rather than definitive evidence 
of deployment readiness. 

Consequently, the RNN model although had a competitive performance, was the least performing 
algorithm. This was because RNN compared to the other algorithms, is more sensitive to 
hyperparameter settings (Farsi, 2021). A limitation of this work is that other diMerent hyperparameters 
could have performed better for RNN which were not explored. Future work will explore these other 
hyperparameters to ascertain their eMectiveness on the model. With the advent of large language 
models (LLM), a key limitation of this study is that it did not explore the use LLM for analysing the incident 
data. While the study focused on traditional ML techniques for safety risk prediction, LLMs could 
enhance the analysis of incidents by extracting deeper insights from unstructured text.  

A significant quantity of safety-related data is available in unstructured formats, including incident 
reports, maintenance logs and employee feedback however, the traditional ML models used for safety 
prediction often rely on structured data. Future research will therefore explore the use of LLMs to 
analyse the vast amounts of historical safety reports, identifying key risk factors, trends, and 
correlations that may not be immediately evident through traditional statistical methods. It is also 
worthy to note that while the proposed framework demonstrates strong predictive capability using real-
world data, it is presented as a proof-of-concept study. This framework is not yet intended for direct 
operational deployment. It would require further validation, system integration and stakeholder-led 
testing before practical implementation. 

A practical implication of accurately predicting body parts which potentially could be injured is the 
significant milestone of transforming an organisation into a learning organisation (Oyedele et al., 2022). 
Such predictions could influence the implementation of preventive measures and could be pertinent in 
developing tailored interventions to reduce highway safety injuries. Future work will further investigate 
the performance of the models by validating the model using a stratified k-fold cross validation 
technique (Prusty et al., 2022). This will further strengthen the reliability of the model making it more 
robust. Moreover, the prediction tool will be tested in practice working in partnership with National 
Highways on real life highways projects. Such work will allow new real-life data collected continuously 
as incidents occur to further train and refine the prediction tool iteratively but also benchmark health 
and safety performance within the organisation.  Lessons learnt will not only help the organisation but 
also members of their support chain who can benefit from this digital innovation. 

 

 

 



 
Loretta Bortey, David J. Edwards  
 

ABC2: Journal of Architecture, Building, Construction, and Cities                    Volume 2025, Issue 02                  16 | 19           
 

Acknowledgements 
The authors wish to thank National Highways for sponsoring this research work.  

Funding 
This research was funded by National Highways (a UK government company).  

Data Availability Statement 
Data is subject to a non-disclosure agreement and is not available for wider dissemination or sharing.  

Conflicts of Interest 
The authors declare no conflict of interest. 

AI Declaration   
The authors confirm that no generative AI tools, including language models such as ChatGPT or other artificial intelligence 
systems, were used in the preparation, writing, analysis or review of this manuscript. All content; analysis and interpretations 
were produced solely by the authors. 

 

 

References 
 Abd Halim, K. N., Jaya, A. S. M., & Fadzil, A. F. A. (2020). Data pre-processing algorithm for neural network binary 

classification model in bank tele-marketing. International Journal of Innovative Technology and 
Exploring Engineering (IJITEE), 9, 272–277. doi: 10.35940/ijitee.C8472.019320 

Abohassan, A., El-Basyouny, K., & Kwon, T. J. (2022). Effects of inclement weather events on road surface 
conditions and traffic safety: An event-based empirical analysis framework. Transportation Research 
Record, 2676, 51–62. doi: 10.1177/03611981221088588 

Abukhashabah, E., Summan, A., & Balkhyour, M. (2020). Occupational accidents and injuries in construction 
industry in Jeddah city. Saudi Journal of Biological Sciences, 27, 1993–1998. doi: 
10.1016/j.sjbs.2020.06.033 

Agarwal, A., Sharma, P., Alshehri, M., Mohamed, A. A., & Alfarraj, O. (2021). Classification model for accuracy 
and intrusion detection using machine learning approach. PeerJ Computer Science, 7, e437. doi: 
10.7717/peerj-cs.437 

Ahuja, P. R., Akhuj, A., Yadav, V., Gulrandhe, P., & Ambekar, A. P. (2024). Managing complex foot crush injuries: 
A case report. Cureus, 16, e52572. doi: 10.7759/cureus.52572 

Ajayi, A., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., Delgado, J. M. D., & Akanbi, L. (2020). Deep learning 
models for health and safety risk prediction in power infrastructure projects. Risk Analysis, 40, 2019–
2039. doi: 10.1111/risa.13425 

Alawad, H., Kaewunruen, S., & An, M. (2019). Learning from accidents: Machine learning for safety at railway 
stations. IEEE Access, 8, 633–648. doi: 10.1109/ACCESS.2019.2962072 

Alessa, F. M., Nimbarte, A. D., & Sosa, E. M. (2020). Incidences and severity of wrist, hand, and finger injuries in 
the US mining industry. Safety Science, 129, 104792. doi: 10.1016/j.ssci.2020.104792 

Al-Fedaghi, S. (2020). Conceptual modeling of time for computational ontologies. International Journal of 
Computer Science and Network Security, 20(6), 14. doi: 10.48550/arXiv.2007.10151 

Alharahsheh, H. H., & Pius, A. (2020). A review of key paradigms: Positivism VS interpretivism. Global Academic 
Journal of Humanities and Social Sciences, 2, 39–43. doi: 10.36348/gajhss.2020.v02i03.001 

Alkaissy, M., Arashpour, M., Golafshani, E. M., Hosseini, M. R., Khanmohammadi, S., Bai, Y., & Feng, H. (2023). 
Enhancing construction safety: Machine learning-based classification of injury types. Safety Science, 
162, 106102. doi: 10.1016/j.ssci.2023.106102 

Al-Kasasbeh, M., Abudayyeh, O., Olimat, H., Liu, H., Mamlook, R. A., & Alfoul, B. A. (2021). A robust construction 
safety performance evaluation framework for workers' compensation insurance: A proposed alternative 
to EMR. Buildings, 11(10), 434. doi: 10.3390/buildings11100434 

Almaskati, D., Kermanshachi, S., Pamidimukkala, A., Loganathan, K., & Yin, Z. (2024). A review on construction 
safety: Hazards, mitigation strategies, and impacted sectors. Buildings, 14(2), 526. doi: 
10.3390/buildings14020526 

Alozi, A. R., & Hussein, M. (2022). Evaluating the safety of autonomous vehicle–pedestrian interactions: An 
extreme value theory approach. Analytic Methods in Accident Research, 35, 100230. doi: 
10.1016/j.amar.2022.100230 



 
Loretta Bortey, David J. Edwards  
 

ABC2: Journal of Architecture, Building, Construction, and Cities                    Volume 2025, Issue 02                  17 | 19           
 

Alshboul, O., Al Mamlook, R. E., Shehadeh, A., & Munir, T. (2024). Empirical exploration of predictive 
maintenance in concrete manufacturing: Harnessing machine learning for enhanced equipment 
reliability in construction project management. Computers & Industrial Engineering, 190, 110046. doi: 
10.1016/j.cie.2024.110046 

Amini, M., Bagheri, A., & Delen, D. (2022). Discovering injury severity risk factors in automobile crashes: A hybrid 
explainable AI framework for decision support. Reliability Engineering & System Safety, 226, 108720. 
doi: 10.1016/j.ress.2022.108720 

Anagnostakis, F., Kokkorakis, M., Walker, K. A., & Davatzikos, C. (2024). Signatures and discriminative abilities of 
multi-omics between states of cognitive decline. Biomedicines, 12(5), 941. doi: 
10.3390/biomedicines12050941 

Bai, C., Xue, Y., Qiu, D., Yang, W., Su, M., & Ma, X. (2021). Real-time updated risk assessment model for the large 
deformation of the soft rock tunnel. International Journal of Geomechanics, 21(1), 04020234. doi: 
10.1061/(ASCE)GM.1943-5622.0001887 

Baker, H., Hallowell, M. R., & Tixier, A. J.-P. (2020). Automatically learning construction injury precursors from 
text. Automation in Construction, 118, 103145. doi: 10.1016/j.autcon.2020.103145 

Bayramova, A., Edwards, D. J., Roberts, C., & Rillie, I. (2023). Constructs of leading indicators: A synthesis of 
safety literature. Journal of Safety Research, 85, 469–484. doi: 10.1016/j.jsr.2023.04.015 

Bichri, H., Chergui, A., & Hain, M. (2024). Investigating the impact of train/test split ratio on the performance of 
pre-trained models with custom datasets. International Journal of Advanced Computer Science & 
Applications, 15(2). Retrieved from 
https://pdfs.semanticscholar.org/4faa/15f05cdaa46c1bc1c000689f802d1cb607e0.pdf, Last Access: 
December 27, 2025. 

Bortey, L., Edwards, D. J., Roberts, C., & Rillie, I. (2022). A review of safety risk theories and models and the 
development of a digital highway construction safety risk model. Digital, 2, 206–223. doi: 
10.3390/digital2020013 

Bortey, L., Edwards, D. J., Roberts, C., & Rillie, I. (2024a). Hidden in plain sight: A data-driven approach to safety 
risk management for highway traffic officers. Buildings, 14(11), 3509. doi: 10.3390/buildings14113509 

Bortey, L., Edwards, D. J., Roberts, C., & Rillie, I. (2024b). Unravelling incipient accidents: A machine learning 
prediction of incident risks in highway operations. Smart and Sustainable Built Environment, 14(6), 
1991–2022. doi: 10.1108/SASBE-08-2024-0316 

Bortey, L., Edwards, D. J., Roberts, C., & Rillie, I. (2025). Decoding the safety matrix: A conceptualisation of 
safety indicator-based variables for highway prediction models. Journal of Traffic and Transportation 
Engineering (English Edition). Retrieved from https://jtte.chd.edu.cn/article/id/7df25534-751f-4f2a-
87da-9cea18623bb8, Last Access: December 27, 2025. 

Chandar, S., Reddy, A., Mansoor, M., & Jamadagni, S. (2020). Road accident proneness indicator based on time, 
weather and location specificity using graph neural networks. In W. M. A., L. F., L. X., D. D., & B. F. (Eds.), 
9th IEEE International Conference on Machine Learning and Applications (ICMLA), December 14-17, 
2020, Miami, FL, USA (pp. 1527–1533). Institute of Electrical and Electronics Engineers Inc. doi: 
10.1109/ICMLA51294.2020.00235 

Choi, J., Gu, B., Chin, S., & Lee, J.-S. (2020). Machine learning predictive model based on national data for fatal 
accidents of construction workers. Automation in Construction, 110, 102974. doi: 
10.1016/j.autcon.2019.102974 

Dumrak, J., Mostafa, S., Kamardeen, I., & Rameezdeen, R. (2013). Factors associated with the severity of 
construction accidents: The case of South Australia. Australasian Journal of Construction Economics 
and Building, 13, 32–49. ISSN: 1837-9133 

Ebrahimvandi, A., Hosseinichimeh, N., & Kong, Z. J. (2022). Identifying the early signs of preterm birth from U.S. 
birth records using machine learning techniques. Information, 13(7), 310. doi: 10.3390/info13070310 

Edwards, D. J., Rillie, I., Chileshe, N., Lai, J., Hosseini, M. R., & Thwala, W. D. (2020). A field survey of hand–arm 
vibration exposure in the UK utilities sector. Engineering, Construction and Architectural Management, 
27, 2179–2198. doi: 10.1108/ECAM-09-2019-0518 

Ekanem, I. (2025). Analysis of road traffic accident using AI techniques. Open Journal of Safety Science and 
Technology, 15, 36–56. doi: 10.4236/ojsst.2025.151004 

Eseonu, C., Gambatese, J., & Nnaji, C. (2018). Reducing highway construction fatalities through improved 
adoption of safety technologies (Final report). The Center. doi: 10.1108/F-07-2018-0085 

Fernández, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning from imbalanced data: 
Progress and challenges, marking the 15-year anniversary. Journal of Artificial Intelligence Research, 61, 
863–905. doi: 10.1613/jair.1.11192 



 
Loretta Bortey, David J. Edwards  
 

ABC2: Journal of Architecture, Building, Construction, and Cities                    Volume 2025, Issue 02                  18 | 19           
 

García-Rois, J., Fondo-Ferreiro, P., Gil-Castiñeira, F., González-Castaño, F. J., & Candal-Ventureira, D. (2021). 
Evaluating management and orchestration impact on closed-loop orchestration delay. Software: 
Practice and Experience, 51, 193–212. doi: 10.1002/spe.2897 

Hale, A. T., Stonko, D. P., Brown, A., Lim, J., Voce, D. J., Gannon, S. R., Le, T. M., & Shannon, C. N. (2018). 
Machine-learning analysis outperforms conventional statistical models and CT classification systems 
in predicting 6-month outcomes in paediatric patients sustaining traumatic brain injury. Neurosurgical 
Focus, 45(5), E2. doi: 10.3171/2018.8.FOCUS17773 

Hasan, B. M. S., & Abdulazeez, A. M. (2021). A review of principal component analysis algorithm for 
dimensionality reduction. Journal of Soft Computing and Data Mining, 2(1), 20–30. Retrieved from 
https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/8032, Last Access: December 27, 
2025. 

Hayes, J. M., Cash, R. E., Buzzard, L., Green, A. M., Boland, L. L., & Anderson, M. K. (2025). State-level helmet 
use laws, helmet use, and head injuries in EMS patients involved in motorcycle collisions. Prehospital 
Emergency Care, 1–6. doi: 10.1080/10903127.2025.2450280 

Headway. (2020). Workplace hard hat safety survey results. Retrieved from https://www.headway.org.uk/about-
brain-injury/further-information/research/brain-injury-research/workplace-hard-hat-safety-survey-
results/, Last Access: December 27, 2025. 

Huang, G., Qu, W.-B., & Xu, H.-Y. (2020). Traffic accident location clustering based on improved DBSCAN 
algorithm. Journal of Transportation Systems Engineering and Information Technology, 20, 169–176. doi: 
10.16097/j.cnki.1009-6744.2020.05.025 

Huang, L., Wu, C., Wang, B., & Ouyang, Q. (2018). Big-data-driven safety decision-making: A conceptual 
framework and its influencing factors. Safety Science, 109, 46–56. doi: 10.1016/j.ssci.2018.05.012 

Hussain, S. A., V, P., P.N.S.B.S.V., K., R., R., L., S., & P.K. (2024). Predicting and categorizing air pressure system 
failures in Scania trucks using machine learning. Journal of Electronic Materials, 53, 3603–3613. doi: 
10.1007/s11664-024-11115-8 

Ishimaru, T., Arphorn, S., Vudhironarit, C., Thanachoksawang, C., Theppitak, C., Kiatkitroj, K., Lertvarayut, T., 
Manothum, A., & Hara, K. (2024). Effectiveness of participatory training for prevention of slips, trips, and 
falls: A cluster randomized controlled trial of corn farmers in Thailand. Asia Pacific Journal of Public 
Health, 36, 574–579. doi: 10.1177/10105395241265542 

Jia, W., Sun, M., Lian, J., & Hou, S. (2022). Feature dimensionality reduction: A review. Complex & Intelligent 
Systems, 8, 2663–2693. doi: 10.1007/s40747-021-00637-x 

Kang, K., & Ryu, H. (2019). Predicting types of occupational accidents at construction sites in Korea using 
random forest model. Safety Science, 120, 226–236. doi: 10.1016/j.ssci.2019.06.034 

Kashani, A. T., Moghadam, M. R., & Amirifar, S. (2022). Factors affecting driver injury severity in fatigue and 
drowsiness accidents: A data mining framework. Journal of Injury and Violence Research, 14(1), 75. doi: 
10.5249/jivr.v14i1.1679 

Kiyatkin, M. E., Aasman, B., Fazzari, M. J., Rudolph, M. I., Vidal Melo, M. F., Eikermann, M., & Gong, M. N. (2023). 
Development of an automated, general-purpose prediction tool for postoperative respiratory failure 
using machine learning: A retrospective cohort study. Journal of Clinical Anesthesia, 89, 111194. doi: 
10.1016/j.jclinane.2023.111194 

Lee, S. W., Guild, T. T., Burgesson, B., & Kwon, J. Y. (2025). Tendon lacerations of the foot and ankle: A 
contemporary review. Foot & Ankle International, 46, 115–125. doi: 10.1177/10711007241292068 

Lo, H.-W., Shiue, W., Liou, J. J. H., & Tzeng, G.-H. (2020). A hybrid MCDM-based FMEA model for identification of 
critical failure modes in manufacturing. Soft Computing, 24, 15733–15745. doi: 10.1007/s00500-020-
04903-x 

Malakouti, S. M., Menhaj, M. B., & Suratgar, A. A. (2023). The usage of 10-fold cross-validation and grid search to 
enhance ML methods performance in solar farm power generation prediction. Cleaner Engineering and 
Technology, 15, 100664. doi: 10.1016/j.clet.2023.100664 

Naseer, M., Minhas, M. F., Khalid, F., Hanif, M. A., Hasan, O., & Shafique, M. (2019). Fannet: Formal analysis of 
noise tolerance, training bias and input sensitivity in neural networks. arXiv preprint arXiv:1912.01978. 
doi: 10.23919/DATE48585.2020.9116247 

Parra-Dominguez, G. S., Snoek, J., Taati, B., & Mihailidis, A. (2015). Lower body motion analysis to detect falls 
and near falls on stairs. Biomedical Engineering Letters, 5, 98–108. doi: 10.1007/s13534-015-0179-x 

Rajini, G., Sheela, G., & Sharmila, S. (2018). Effects of employee wellness program: A dependency analysis. 
Journal of Advanced Research in Dynamical and Control Systems, 10, 584–594. ISSN: 1943-023X 



 
Loretta Bortey, David J. Edwards  
 

ABC2: Journal of Architecture, Building, Construction, and Cities                    Volume 2025, Issue 02                  19 | 19           
 

Roberts, C., Edwards, D. J., Sing, M. C. P., & Aigbavboa, C. (2021). Post-occupancy evaluation: Process 
delineation and implementation trends in the UK higher education sector. Architectural Engineering and 
Design Management. Advance Online Publication. doi: 10.1080/17452007.2021.1956422 

Sarvari, H., Edwards, D. J., Rillie, I., & Posillico, J. J. (2024). Building a safer future: Analysis of studies on safety I 
and safety II in the construction industry. Safety Science, 178, 106621. doi: 10.1016/j.ssci.2024.106621 

Xie, J., Zhang, L., Zheng, Q., Liu, X., Dubljevic, S., & Zhang, H. (2021). Strain demand prediction of buried steel 
pipeline at strike-slip fault crossings: A surrogate model approach. Earthquake Engineering & Structural 
Dynamics, 20, 109–122. doi: 10.12989/eas.2021.20.1.109 

Xu, X., & Zou, P. X. W. (2021). Discovery of new safety knowledge from mining large injury dataset in 
construction. Safety Science, 144, 105481. doi: 10.1016/j.ssci.2021.105481 

Yacouby, R., & Axman, D. (2020). Probabilistic extension of precision, recall, and f1 score for more thorough 
evaluation of classification models. In S. Eger, Y. Gao, M. Peyrard, W. Zhao, & E. Hovy (Eds.), 
Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, November 2020, 
Online (pp. 79–91). doi: 10.18653/v1/2020.eval4nlp-1.9 

Zhang, Y., Sun, J., Zhang, J., Shen, H., She, Y., & Chang, Y. (2023). Health state assessment of bearing with 
feature enhancement and prediction error compensation strategy. Mechanical Systems and Signal 
Processing, 182, 109573. doi: 10.1016/j.ymssp.2022.109573 

  
 
 

Disclaimer/Publisher’s Note 
The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and do not reflect the views of the Architecture, Buildings, Construction and Cities (ABC2) Journal and/or its 
editor(s). ABC2 Journal and/or its editor(s) disclaim any responsibility for any injury to people or property resulting from any 
ideas, methods, instructions, or products referred to in the content.  


