ABC2: Journal of Architecture, Building, Construction, and Cities

Empowering research for Sustainable
Development Goals, ABC2: Architecture,
Building, Construction, and Cities is a
fundamental manifesto to address these
pressing issues, fostering dialogue and
knowledge exchange among researchers,
practitioners, and policymakers. Exploring
sustainable design, resilient infrastructure,
advanced construction methods, and
equitable urban development, ABC2 aims
to empower the global community to
create adaptive, inclusive, and sustainable
environments. The ABC2 focus on cutting-
edge research, technological
advancements, and transformative
strategies is essential for navigating the
future of our cities and communities.

Copyright: © 2025 by the authors.

ABC2 is an open-access journal
distributed under the terms of the Creative
Commons Attribution 4.0 International
License (CC BY 4.0). View this license’s
legal deed at
https://creativecommons.org/licenses/by/
4.0/

Received: 30/11/2025
Revised:  23/12/2025
Accepted: 25/12/2025
Published: 31/12/2025

Volume: 2025
Issue: 02
Pages: 1-19

Research Article

The Anatomy of Harm: A Machine Learning
Smart Shield for Predicting Highway Worker
Injuries

Loretta Bortey ", David J. Edwards’

™ Infrastructure Futures Research Team, Birmingham City University
City Centre Campus, Millennium Point, Birmingham B4 7XG, United Kingdom
2 CIDB Centre of Excellence, Faculty of Engineering and the Built Environment,
University of Johannesburg, Johannesburg 2092, South Africa

Correspondence: loretta.bortey2@bcu.ac.uk

Abstract

Despite growing interest in the application of machine learning (ML) for accident
prediction and safety analysis, limited research has explored its use in predicting
anatomical injury risk among highway workers. This study addresses this gap by
developing a predictive model capable of classifying body parts most susceptible to
injury in highway-related incidents. Positivism and interpretivism set the theoretical
foundations for this study. The sequential exploratory mixed method adopted involved the
preprocessing of accident datasets, feature selection and model evaluation using
established performance metrics. A Support Vector Machine (SVM) algorithm was
employed as the primary classifier, with its performance benchmarked against three
comparative models: Naive Bayes (NB), Random Forest (RF) and a Recurrent Neural
Network (RNN). Analysis results showed that variables such as ‘region’, ‘site/project’,
‘event type’, ‘vehicles involved’ and ‘location’ were very significant in predicting bodily
injuries. Moreover, the findings also indicate that the SVM model, when optimally tuned,
yields competitive classification accuracy, with RF and RNN models showing promising
supplementary performance. This study introduces a novel framework for body-part
injury classification within high-risk highway environments tailored for highway workers.
This is the first study to use real life datasets specifically collected from highway worker
injuries and departs from previous studies which have focused on drivers, pedestrians
and the road only.

Keywords: Injury prediction; Machine learning; Highway workers; Safety; Feature
importance

Highlights

» Proposed an ML framework for anatomical injury risk classification in highway
workers.

» Identified region, event type, site, vehicle involvement, and location as key predictors.

» Optimised SVM achieved competitive accuracy versus RF and RNN benchmark
models.
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1 Introduction

Project sites and locations for highway operations normally present hazardous elements which could
be detrimental to the safety of highway workers (Eseonu et al., 2018). However, there is the probability
that exposure to such hazardous elements could engender body part injuries (e.g. arms, head, legs or
torso) which could impact the overall health and wellbeing of workers (Alkaissy et al., 2023). In several
instances, injury occurrences on highway project locations have rendered victims incapacitated hence,
exposing employers to cost of compensation claims and a significant dent in organisational reputation
(Zhang et al., 2023). Such negative consequences present a need for drawing insights from factors that
contribute to injury occurrences and proffering tailored solutions to proactively prevent such incidents
(Abukhashabah et al., 2020; Bortey et al., 2024a). In a survey conducted by Headway (2020), head
injuries accounted for 20% of all workplace injuries. According to Eurostat (2023) injuries to the upper
limbs (shoulders, arms and hands) accounted for 38.3% of the total number of non-fatal accidents at
work while the lower limbs (hips, legs and feet) recorded 29.1% of body parts affected in injuries.

Incident data from the highway accident reporting tool (HART) database in the UK (administered by
National Highways — A UK government company) presents a number of reported injury events with the
associated body parts that were affected during the injury (Bortey et al., 2024b). Analysing these injuries
cases could provide an understanding of the most frequent body part affected, which could in turn
present an indication of the type of work or activity that causes such body parts to be inflicted (Lo et al.,
2020). Furthermore, the body part affected could give insight to which injuries were more likely to be
fatal and has the potential of resulting in more grievous consequences (Parra-Dominguez et al., 2015).
For example, an injury to the head could result in a more fatal outcome as compared to an injury to leg
(Dumrak et al., 2013). Such knowledge presents an important opportunity for safety managers to devise
suitable control measures to reduce risks posed (Sarvari et al., 2024).

Although a few studies have sought to uncover the determinants of injuries affecting various body parts
(cf. Dumrak et al.,, 2013; Lo et al.,, 2021), an insufficiency of data and absence of detailed
comprehension of the relationships that exist between these factors have impeded the development of
accurate predictive models that could classify these injuries into body parts likely to be affected
(Kashanietal., 2022). In cases where data could be accessed, the quality of existing data is sub-optimal
(Xu & Zou, 2021). However, data is crucial in the development of both stochastic and deterministic
predictive models (Bortey et al., 2022).

Understanding significant factors that are essential to injury occurrences and developing predictive
models which could identify underlying patterns and trends prior to an injury occurring is a significant
step towards enhancing safety risk management (Amini et al., 2022). Such a model would enable
evidence-based decision making and contribute to prioritising and maximising the utility of available
resources (Alawad et al., 2019). Machine learning (ML) has been utilised in many industries to predict
injury including construction, manufacturing and logistics. However, the literature (Eseonu et al., 2018b;
Bortey et al., 2024) reveals that the application of ML for enhancing safety in highway operations
(particularly for highway traffic officers (HTOs)) has been scant. For example, Alshboul et al. (2024) used
artificial intelligence (Al) and ML to empirically explore predictive maintenance in concrete
manufacturing. Similarly, Kang & Ryu (2019) employed a random forest (RF) algorithm to identify key
determinants of construction accident types, uncovering that human factors, lack of supervision and
insufficient protective equipment were major contributors. In another study, Ekanem (2025) used ML to
forecast the severity of road traffic accidents and significant insights that could be derived from them.
In a highway setting, Bortey et al., (2024a) and Ajayi et al., (2020) predicted the risk levels involved in
highway operations and identified relevant features that contributes to increasing safety risk
challenges. Collectively, these studies reveal the potential of applying ML in accident prediction and
analysis, and the significance of identifying and choosing pertinent features that could positively impact
and prediction model developed. However, there remains aresearch gap in using ML to determine which
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body regions are most at risk during highway operations. A gap that this present research addresses and
contributes to knowledge.

This paper therefore aims to develop a predictive model capable of classifying body part injuries using
a support vector machine (SVM) algorithm. Three ML algorithms were used to compare and benchmark
the performance of the SVM algorithm viz.: naive bayes (NB); RF, an ensemble learning algorithm that
employs all three ML algorithms; and a deep neural network (DNN) model known as recurrent neural
network (RNN). Associated research objectives are to identify the most efficient ML algorithm and the
most suitable parameters for body part injury classification. This study also uses statistical tests such
as chi-square test to investigate significant relationships between the target variable (i.e. body-part
affected) and the independent variables sourced from extant literature (e.g. weather, experience, age,
etc.) to determine the most pertinent variables which influence the classification of body part injuries.
Research questions framed to guide this work are i) what are the most important predictors of body
parts likely to be affected in an injury?; and ii) what ML model can be effective for classifying body parts
likely to be affected in an injury? The research presented in this seminal paper is not a fully developed
and deployed safety prediction model but instead focuses on developing a proof-of-concept ML model
for risk assessment in highway operations.

2 Methodology

This study follows the methodological steps detailed by Saunder et al. (2016) to develop a proof-of-
concept predictive model capable of forecasting body parts likely to be affected in injurious incidents.
An overarching epistemological framework, combining positivism and interpretivism, served as the
philosophical foundation for this research (Alharahsheh & Pius, 2020). Deductive and inductive
reasoning (Edwards et al., 2020) was employed to first explore the relationships between variables and
obtain insights from the data before training and testing ML algorithms to ascertain the best performing
model. Using incident data obtained, a sequential exploratory mixed method approach (Roberts et al.,
2021) was adopted to gain understanding of the trends and patterns presented by the qualitative data.
Insights from this initial phase informed the subsequent quantitative phase, where the variables are
coded and used to build a ML prediction model. A case study strategy was then employed to provide
contextual depth and real-world relevance to the analysis (Bayramova et al., 2023). Such a strategy
allowed for a focused examination of safety and incident patterns in highway environments. A
retrospective time horizon was adopted for this study because all data points were acquired from
historical data contained within the case studies analysed (Kiyatkin et al., 2023). The data was pre-
processed using python programming tools to handle missing data and clean out duplicates.
Methodological steps adopted are elaborated in Figure 1 while techniques and procedures (adopted in
each of the key stages viz.: data collection; data pre-processing; training and testing; the modelling
process; and performance and testing) are detailed in the subsequent subsections.

2.1 Data collection

A comprehensive dataset comprising 72,811 recorded highway incident cases from 2017 to 2022 was
obtained to investigate the contributing factors to injuries sustained during past highway operations
conducted by highway workers. The datasetincludes 23 variables, of which 22 are independent features
and one is the target variable (body part affected), categorised into 13 distinct classes. Independent
variables used (refer to Table 1) represent diverse organisational, environmental, temporal and
demographic characteristics. These include factors such as region, project site, date and time of event,
weather and visibility conditions, experience in current role, type of work and project risk level.
Independent variables were selected based on their relevance to previous research in occupational
incident analysis (Bortey et al.et al., 2024a) and the strategic objective of identifying patterns that may
enhance predictive accuracy in safety risk modelling for highway operations.
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Data collection

Data pre-processing

Predictive modelling

Performance
evaluation

. . | Missing data handling | | Support Vector Machine | | Accuracy score |
| Duplicate data handling | | Random Forest | | Precision |
| Dimensionality reduction | | Naive Bayes | L, | Recall |
| Data exploration/visualisation | -
| Ensemble learning | | F1-score |
| Data balancing |
| One hot encoding | | Recurrent Neural Network | | AUROC |
Processed Data Optimised ML model
Training
/testing
Figure 1: Methodological process.
Table 1: Variables in dataset.
Independent Variable Data Type Meaning References
PublishedRecordld Int ID number for data point (Ebrahimvandi et
al., 2022)
Region Categorical Theregion where project is based (Chandar et al,
2020)
Site/Project’ Categorical The site where projectis based (Huang et al., 2020)

Date and Time of Event
vehicles involved?

Type of Person

Location

Did this event occur on the
SRN (strategic road
network)?

Experience in Current Role
Age Range
Weather / Visibility
Potential Severity Rating
Actual Severity Rating
Month

Season

Type_of_work

Year
Day_of_week

Datetime
Categorical

Categorical
Categorical
Categorical
Integer
Integer
Categorical
Integer
Integer
Integer
Categorical

Categorical

Categorical
Categorical

The date and time incident occurred
Are there vehicles involved in the project (yes/no)

The status of the individual’s employment or visit
(employee, contractor, member of public, customer)
The location of the project site

Isincident a strategic road network related? (Yes/No)

The number of years worker has been working in that
position
The age of the worker

The visibility at time of incident (rainy, stormy, clear,
windy)
What the possible impact of incident could be (1-25)

What the actual impact was (1-25)

The month of incident

The season of the incident (winter, summer, spring,
and autumn)

The type of work being undertaken (traffic
management, highway operation, not applicable)
Year of incident

The day of the week incident happened (Monday-
Sunday)

(Bai et al., 2021)
(Alozi and Hussein,
2022)

(Rajini et al., 2018)

(Huang et al., 2020)
(Bortey et al,
2024a)

(Garcia-Rois et al.,
2021)

(Bortey et al,
2024a)
(Abohassan et al.,
2022)
(Kashani et al,
2022)

(Amini et al., 2022)
(Hale et al., 2018)
(Ajayi et al., 2020)

(Choi et al., 2020)

(Al-Kasasbeh et al.,
2021)
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Time_of_day Categorical Thetime of the day (morning, afternoon, evening, and (Al-Fedaghi, 2020)
night)
‘Injury occurrence Categorical The likelihood of an injury occurring (True/ False) (Amini et al., 2022)
‘Injury Type’ Categorical The types of injury that could occur (cut/laceration/ (Baker et al., 2020)
sprain/strain, bruising, amputation.
Musculoskeletal, abrasion)
Projectrisk level’ Categorical The likely severity of project risk (high, medium, low)  (Amini et al., 2022)
Event Type’ Categorical The kind of incident likely to occur (Personal (Bortey et al,

illness/injury, undesirable circumstance, security, 2024b)
environment, infrastructure)

Dependent variable

‘Part of Body Affected’, Categorical The part of the body likely to be affected (head, hand, ((Ajayi et al., 2020)
waist, leg etc.)

2.2 Data Pre-Processing

Several preprocessing techniques were applied to enhance the efficiency and facilitate the modelling
process. Initially, to address missing values, the ‘Simplelmputer’ class from scikit-learn library (Hussain
etal.etal., 2024) provided a strategy parameter, which enabled the specification of variables to impute
missing categorical values with the mode (i.e. most frequently occurring number). This method
significantly improved the predictive power of the final models despite its computational demands. The
simple imputation method has been used by several studies to fillin missing data in ML tasks (Abd Halim
etal., 2020; Hussain et al., 2024).

The values in the ‘body part affected’ column in Table 1 had duplicate entries which posed challenges
for data analysis and interpretation. For example, entries such as ‘back/spine’, 'lower arm, hip, hand,
back/spine’, ‘hip’ were observed. In this example, the values ‘back/spine’ and ‘hip’ can be seen to have
been duplicated leading to an inaccurate representation of the true count of unique values. To address
duplicate entries, the first four letters of each entry was examined, and the same value was assigned to
entries with identical prefixes. The observation made by examining the first four letters of the duplicate
entries was that they possessed common prefixes. Therefore, by focusing on the first four letters, the
commonalities were effectively captured and consolidated. Hence, the unique values were reduced
from 179 to 13 unique entries. Assigning the same value to entries sharing a common prefix resulted in
the reduction of the unique values in the ‘body part affected’ column without any loss of essential
information conveyed by the original values. Merging the duplicate entries improved the clarity and
interpretability of the data, hence facilitating meaningful insights and promoting reliable analysis of
results.

Additionally, if two features were found to have a high p-value (Alozi & Hussein, 2022) one of the features
was dropped in a process known as dimensionality reduction (Jia et al., 2022). This is because, the
model’s complexity increases with a high dimensional feature set (Huang et al., 2018). Also, some of the
variables may be redundant and might exhibit multicollinearity, thereby undermining the statistical
significance of the independent variables (Hasan & Abdulazeez, 2021).

2.3 Training and Testing

After the data was pre-processed, the dataset was split into two sets at random: 1) the training set,
which was used to train the model and rank the significance of the variables for the feature selection
process); and 2) the test dataset, which was used to verify the performance of the prediction model.
This strategy sought to reduce any variance that might be produced by performing a simple train test
split(Bichrietal., 2024). The 70-30 splitwas chosen to ensure that the model has sufficient datato learn
from while reserving a significant portion for an unbiased evaluation (c.f. Naseer et al., 2020). To
optimise the performance of the models, the values of the parameters for each of the algorithms were
controlled by suitably chosen grids detailed in the modelling process.
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2.4 Modelling Process

An SVM model was created and fit to the training data in the model experiment. The kernel applied was
the polynomial kernel, the probability was set to ‘true’ with a random state of ‘42’. Different experiments
were also conducted for three other ML models namely, RF, NB and the ensemble learning method to
compare their performance against that of SVM model. A DL model was also used to perform
classification to ascertain whether a neural network would have a better performance on the data as
compared to ML models. The models were then validated using a technique called k-fold cross-
validation (Malakouti et al., 2023) that involved using the procedure in k humber of tests and randomly
dividing the data into k folds. The value of k in this experiment was randomly chosen as ten. The
performance of each model was then compared, and the top performing model was identified.

The algorithmic modelling steps are:

Input: Pre-processed dataset D
Set Parameters:

kernel € poly

probability € True
random_state < 42

k € 10 for k-fold cross-validation

Initialise Models:

M, < SVM_Model ¢ Support Vector Machine with above parameters
M, < RF_Model ¢« Random Forest

M3 < NB_Model « Naive Bayes

M, < Ensemble_Model « Chosen ensemble learning method

Mz < RNN_Model « Recurrent Neural Network for classification

Create k-Folds:

Forifrom 1 to k:

Use fold Fi as validation set;

Use remaining k-1 folds as training set;

Train the model on training set;

Evaluate performance on validation set;

Store performance metric (e.g. accuracy, F1-score); and

Compute average performance metric over k folds;

Mathematically, this is represented as:
Splitting the dataset D into k equally sized folds F;, F,, ..., Fi; and
Foreach model M € { My, M,, M5, M,, M5}.
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Fori=1tok:

LetV = F; watidation set) Vs
Let T = D/F; (training set)
TrainMonT;

Evaluate M on V;

Store evaluation metric E;; and
= 1
Compute average performance over k folds: E = ;Z{-‘zl E;.

Compare the average performance of all models on the average metric E
M* = arg ™%%XE (M)
Select and report the model with the highest average performance

Output: Best-performing model based on cross-validation results M*

2.5 Performance Evaluation

To identify the best performing model among the set of ML models utilised, a comprehensive set of
classification metrics was adopted to evaluate the performance of each model. The most commonly
used metric for evaluating ML models is the accuracy score (Agarwal et al., 2021). However, in cases
where the data shows instances of class imbalance, accuracy score alone can be misleading
(Fernandez et al., 2018). Therefore, in addition to the accuracy score metric, other metrices viz;
precision, recall, F1-score and Area Under the Receiver Operating Characteristic Curve (AUROC) were
employed to give a more detailed indication of the models’ performance.

Accuracy score presents a general sense of overall model performance by evaluating the ratio of
correctly predicted cases out of the total predictions (equation 1).

TP+TN
accuracy = —————— (1)
TP+TP+FP+FN
Precision gives an indication of how reliable the positive classifications are. Therefore, it examines the
ratio of true positive predictions out of all the positive predictions made by the model (equation 2).
TP
TP+FP (2)

precision =

Recall measures how effective the modelis in capturing the relevant instances. Hence, it evaluates the
model’s ability to correctly identify all the positive cases which are actually positive (equation 3).

(3)

TP
TP+FN

recall =

The F1-score provides a balance between the precision and the recall and is otherwise known as the
harmonic mean of the precision and recall (Yacouby & Axman, 2020). It is very useful when seeking a
trade-off between false positives and negatives (equation 4).

2(precision*recall)

4)

F1 — score = —
precision+recall

The AUROC helps to assess the model’s ability to differentiate between the distinct classes across
various classification thresholds (Amini et al., 2022). The higher the AUROC value, the better its ability
to distinguish. This is known as the discriminative performance of the model (Anagnostakis et al., 2024).
Due to the multi-class nature of the classification task in this study, the use of the AUROC metric is
essential in objectively evaluating the performance of each model.

ABC2: Journal of Architecture, Building, Construction, and Cities Volume 2025, Issue 02 7119



Loretta Bortey, David J. Edwards

3 Results - Key Findings

Data for the target variable was explored and visualised to aid in obtaining a better understanding of its
structure and nature. Visualisation also sought to help uncover an trends and patterns that may be
hidden in the data. Figure 2 presents the distribution of body part affected from various personalillness
and injury incidents. The category ‘not applicable’ represents incidents which did not lead to injuries
were the most occurring. However, for incidents which injuries had ensued, the most frequently
reported body part affected on highway project site/locations was the leg/knee (f=338 or 17.2%). This
was followed by: lower arm including wrist and hand (=275 or 14%); head (=207 or 10.5%); ankle/foot
(f=204 or 10.3%); finger/thumb (f=198 or 10.1%); mental/psychological (=163 or 8.3%); back/spine
(=156 or 7.9%); neck/shoulder (=126 or 6.4%); upper arm including elbow (=97 or 4.9%);,
chest/stomach (=74 or 3.8%); eye/ear (=58 or 2.9%); hip (f=21 or 1.1%); and lungs/throat (by chemical)
(f=16 or 0.8%). Evidently, the chest/stomach area, eye/ear, hips and lungs/throat were the least recorded
body part involved in injuries.

Lungs/Throat (by chemical)

Hip

Eye/Ear

Chest/Stomach

Upper arm including elbow

Neck/Shoulder

Back/Spine

Body part

Mental/Psychological

Finger/Thumb

Ankle/Foot

Head

Lower arm including wrist and hand

Leg/knee

Not applicable

50 100 150 200 250 300 350 400
Frequency (No.)

Figure 2: Distribution of body parts affected by injuries.

3.1 Feature Importance and Dimensionality Reduction (Chi-square test)

Table 2 presents the independent variables and their associated chi-square statistic and p-value. The
chi-square statistic measures the difference between the observed frequencies and the expected
frequencies if two categorical variables were deemed associated. The greater the difference between
observed and expected frequencies, the greater the values of the chi-square statistic. Therefore, a high
chi-square value indicates an association between the variables while a low value indicates
independence. In contrast, the smaller the p-value (i.e. <0.05), the greater the chance of an association
between the variables, hence rejecting the null hypothesis of independence.

Table 2: Chi-square table.

Variables Chi-square (CS) P-value (PV)
Region 2197.618813 5.218114e-259
Site/project 15773.829953 0.000000e+00
Event type 51244.164903 0.000000e+00
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Vehicles involved 1093.540835

1.392244e-225

Type of person 34.574609 6.718692e-01
Location 2774.114106 0.000000e+00
Did this event occur on the SRN? 179.344500 2.308856e-31
Injury type 114009.334610 0.000000e+00
Weather/visibility 248.317880 3.150706e-23
Season 39.119176 4.645261e-01
Type_of_work 34.574609 1.211591e-01
Injury occurrence 50650.254417 0.000000e+00

35544.383540

0.000000e+00

Project risk level
Day_of week
Time_of_day

4.915031e-01
1.241510e-02

77.599370
77.518971

Two separate heatmaps (refer to Figure 3a and 3b) were created for the chi-square statistics and the p-
values with each heatmap displaying the values for each variable, with annotations showing the
numerical values. A cool warm colour map was used to represent the values, with blue colours
indicating lower values and red colours indicating higher values.

Event Type - 51244.16
100000

Injury occurrence - 50650.25

Project risk level - 35544.38

Site/Project 15773.83 -80000

Location 2774.11

Region 2197.62

E -60000
K vehicles involved? 1093.54
s Weather / Visibility 248.32
Did this event occur on the SRN? 179.34
-40000
day_of_week 77.60
time_of_day 77.52
Season 39.12 20000
Type of Person
Type_of_work
Chi-square
Figure 3a: Chi-square statistics for categorical variables.
Injury Type 0.00e+00
Event Type 0.00e+00 0.6
Injury occurrence 0.00e+00
Project risk level 0.00e+00
- 0.5
Site/Project 0.00e+00
Location 0.00e+00
-0.4
Region 5.22e-259
3
@ vehicles involved? 1.39e-225
= Weather / Visibility 3.15e-23 -03
Did this event occur on the SRN? 2.31e-31
day_of_week - 4.92e-01 -0.2
Season - 4.65e-01
0.1
Type of Person 6.72e-01
Type_of_work 1.21e-01
0.0
P-value
Figure 3b: P-value for categorical variables.
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The variables ‘type of person (PV=0.67)’; ‘day of week (PV=0.49)’; ‘season (PV=0.46); ‘type of work
(PV=0.12)’ had p-values > the significant level of 0.05. Similarly, the variables with higher p-values, also
had relatively very small chi-square statistic value indicating that there is no statistically significant
association between the ‘type of person’, ‘season’, ‘day of week’ and ‘type of work’ variables and the
target variable (body part affected). Therefore, the null hypothesis of nhon-association is not rejected.
However, the variables, ‘region’, ‘site/project’, ‘event type’, ‘vehicles involved?’, ‘location’, ‘did this event
occur on the SRN?’, ‘injury type’, ‘weather / visibility’, ‘season’, ‘injury occurrence’ and ‘projectrisk level’
had large chi-square statistics which indicates a substantial discrepancy between the observed and
expected frequencies, and a very low p-value which suggests that this association is highly unlikely to
be due to chance alone. Therefore, the null hypothesis of non-association is rejected. These variables
were then adopted as input variables in the modelling process.

3.2 Model Performance

Table 3 presents the performance metrics, including precision, accuracy, recall, F1-score and AUROC,
for each of the different ML models used to classify the part of body likely to be affected in the event of
an injury occurrence. The performance of the models was evaluated using the 10-fold cross-validation
(Malakouti et al., 2023). In each of the ten iterations, the dataset was randomly partitioned into ten equal
subsets or “folds”, one-fold was set aside as the validation set and the model was trained on the
remaining nine folds. This process was repeated such that each fold served once as the validation set,
ensuring all data points were used for both training and validation across the iterations. The results
showed that SVM outperformed all the other models in terms of accuracy.

Table 3. Classification results

Model Accuracy score (%) Precision (%) Recall (%) F1-score (%) AUROC (%)
SVM 99 98 97 97 98
RF 96 94 94 94 95
NB 91 92 91 92 91
EL 98 97 98 98 97
RNN 95 94 92 94 94

Based on the overall performance of the models presented in Table 3, SVM is the best performing model
in terms of accuracy (99%), AUROC (99%), indicating an almost precise level of consistency in
classification. Ensemble learning had the second highest performance with an accuracy (98%) and
AUROC (97%). RF ranked third with an accuracy (96%), AUROC (95%), followed by RNN, with accuracy
(95%), AUROC (94%). NB was the least performing model with accuracy (91%) and AUROC (91%).

3.2.1 Performance of Each Class Using ROC Curve

Figure 4 presents the ROC curve which describes how well each class of the target variable performed
in the experiment for the best performing algorithm which was the SVM algorithm. Using the one-vs-rest
multi-class algorithm, the results show that, each class of the target variable had near perfect
prediction for body part likely to be affected. This shows, the accuracy of 99% for the SVM was not
influenced by biased prediction of the majority class but rather has a balanced high prediction ability
across each of the classes. Such high AUC scores suggest that the model is highly effective at multi-
class classification and is capable of distinguishing between categories with minimal overlap. The tight
clustering of all curves near the top-left corner of the plot also implies low false positive rates and high
true positive rates across board.

ABC2: Journal of Architecture, Building, Construction, and Cities Volume 2025, Issue 02 10119



Loretta Bortey, David J. Edwards

1.0 (=t llee el B B e e e e e e ;
7
7’
7’
7’
7’
7’
r'd
7’
0.8 -7
7’
7’
7’
7
w = = micro-average ROC curve (area = 1.00)
]
& 0.6 - ROC curve of class 0 (area = 1.00)
¢ ROC curve of class 1 (area = 1.00)
= —— ROC curve of class 2 (area = 1.00)
& _ — ROC curve of class 3 (area = 1.00)
g - »7 = ROC curve of class 4 (area = 1.00)
=5 ,/’ - ROC curve of class 5 (area = 1.00)
7 ROC curve of class 6 (area = 0.99)
,/’ - ROC curve of class 7 (area = 1.00)
7 ROC curve of class 8 (area = 1.00)
0.2 1 ’,’ — ROC curve of class 9 (area = 0.99)
PR - ROC curve of class 10 (area = 1.00)
/’, ROC curve of class 11 (area = 1.00)
,/ - ROC curve of class 12 (area = 1.00)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4: ROC curve for body part affected.

4 Discussion

An exploration of the target variable presented the top five body parts usually impacted in an injury as:
i) leg/knee; ii) lower arm including wrist and hand; iii) head; iv) ankle/foot; and v) finger/thumb. This could
give an indication of the type of activities or incidents that must be carefully considered, prioritised and
evaluated during highway operations. The type of incident or activity that leads to an injury can be
inferred from the body part affected (Oyedele et al., 2021). Injury prevention resources must be
prioritised for these areas to proactively pre-empt these injuries (cf.). Table 4 provides details of such
incidents which could affect the body part stated.

Abukhashabah et al., (2020) found that falling equipment caused 27% of head injuries at the workplace
hence, the provision and use of appropriate PPEs was pertinent to reducing such injuries. However, it is
far better to eliminate the risk of falling equipment altogether under the hierarchy of control theoretical
concept (Almaskati et al., 2024). Ahuja et al. (2024) also recognised that heavy objects falling on the
foot, or heavy machinery running over the foot could be some examples of incidents that could cause
injuries to the ankle or the foot with severe damages to the muscle or tissues. Alessa et al. (2020) found
that handling equipment and climbing scaffolds are activities which could contribute to finger/thumb
injuries. These studies support the postulations of incidents likely to be the causes of body partinjuries
in this study.

Table 4: Inferred incidents from body parts injured.

Body part Incident/activity References
Leg/Knee Slips, falls or trips on uneven surfaces. (Xie et al., 2021; Ishimaru et
Falls from heights. al., 2024)
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Struck by falling objects.
Twisting or hyperextension during physical activities.
Overuse injuries from repetitive motions.

Lower arm  Accidents involving machinery or tools. (Choi et al., 2020; Edwards et
including wristand  Impactinjuries from heavy objects. al., 2020)
hand Repetitive strain injuries from typing or manual labour.

Cuts or lacerations from sharp objects.
Fractures or sprains from falls or collisions.
Head Falls from heights or slips. (Hayes et al., 2025)
Struck by moving objects or equipment.
Vehicle accidents.
Impact injuries from falling debris and equipment.
Ankle/foot Twisting or rolling the ankle on uneven ground. (Ahuja et al., 2024; Lee et al.,
Falls or slips on slippery surfaces. 2025)
Dropping heavy objects on the foot.
Crushing injuries from machinery or equipment.
Sprains or strains from sudden movements.
Finger/thumb Pinching injuries from closing doors or machinery. (Alessa et al., 2020)
Cuts or lacerations from sharp objects.
Crush injuries from heavy objects or equipment.
Impact injuries from striking objects.
Fractures or dislocations from accidents or falls.
Climbing scaffolds/ladder.

Analysis of association conducted using the chi-square test of association showed that, the
independent variables ‘region’, ‘site/project’, ‘event type’, ‘vehicles involved’, ‘location’, ‘did this event
occur on the SRN’, ‘injury type’, ‘weather / visibility’, ‘season’, ‘injury occurrence’ and ‘project risk level’
were the most significant variable in predicting a body part likely to be affected by an injury. This finding
answers the research question ‘what the mostimportant predictor of body parts are likely to be affected
in an injury?’ The finding is in congruence with findings of other studies that showed that ‘project type’,
‘location’, ‘experience’, ‘day’ and ‘season’ were influential to predicting body part injuries (Ajayi et al.,
2019; Oyedele et al., 2021). Applying ML to predict body partinjuries and the incidents that cause them
presents an innovative opportunity to tackling health and safety risks, particularly in high-risk
environments such as highway construction and maintenance. By analysing historical injury records
and associating specific types of incidents like slips, falls or machinery accidents with injuries to
particular body parts, ML models such as SVM, RF and RNN can detect significant patterns and
correlations within the dataset. A nuanced understanding of the root causes of injuries could be a
significant step to unearthing pertinent insights. Insights obtained could also help to identify
combinations of risk factors such as location, project type, season and equipment used that increase
the probability of injury occurrences for individual operations. For instance, if the model identifies a
strong link between poor visibility and increased incidence of ankle injuries during winter roadworks,
targeted adjustments such as better lighting and traction footwear can be introduced to reduce risks.
Moreover, the costs for this investment can be justified by comparing the benefits to be accrued from
control measures implemented when compared to the tangible and intangible costs incurred by an
incident. Such costs can be considerable and for a fatality, this can run into several millions.

The results for model development indicate that SVM achieved the highest accuracy score of 99%,
followed closely by Ensemble Learning (EL) with 98%. RF and RNN attained accuracy scores of 96% and
95%, respectively, while NB achieved an accuracy score of 91%. Across precision, recall and F1-score
metrics, SVM consistently demonstrated strong performance, maintaining precision, recall and F1-
score values above 97%. RF, EL and RNN also exhibited competitive performance across these metrics,
with precision, recall, and F1-score values ranging from 94% to 98%. NB, while slightly lower in
performance compared to other models, still demonstrated reasonable precision, recall, and F1-score
values of around 91% to 92%. These results suggest that SVM is the most reliable classifier for this task,
providing both high accuracy and balanced performance across multiple evaluation metrics. The strong
performance of RF, EL and RNN indicates that these models are also suitable alternatives, while NB may
be less optimal for fine-grained injury classification. The high performance across all models
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demonstrates the predictive value of the selected variables, specifically, the incident and site features
as presented in the results.

The SVM outperforming all other models could be due to its ability to effectively model linear decision
boundaries and handle high-dimensional feature spaces (Park et al., 2020). In this thesis, SVM could
have utilised the intrinsic linear separability of the data, resulting in robust predictions (Guan et al.,
2022). EL, which combined multiple models (SVM, RF, NB) to improve performance, also demonstrated
a strong performance by making use of the diverse strengths the of individual models to enhance
prediction accuracy (Mienye et al., 2020). RF and RNN, while slightly lower in accuracy compared to
SVM and Ensemble Learning, still exhibited competitive performance, indicating their capability to
capture complex patterns in the data (Jung et al., 2020). This could also be attributed to SVM having
fewer hyperparameters to tune as compared to RNN and ensemble learning, which can simplify the
model selection and tuning process. In the experiment, the hyperparameters of SVM were well-
optimised for the data by exploring different combinations of hyperparameters to demonstrate which
combination was most effective. The superior performance of SVM compared to RNN and Ensemble
learning, could therefore be attributed to the optimal hyperparameter utilised as RNN and ensemble
learning are more sensitive to hyperparameter settings (Farsi, 2021; Mohammed & Kora, 2023).

The predictive model developed has broad applicability beyond highway projects. Fields such as
manufacturing, mining, healthcare and logistics where workers are exposed to physical hazards can
adopt this model and tailor it with industry variables and characteristics to forecast injury patterns and
design safer workflows. As organisations embrace such digital transformations, using ML to pre-
emptively manage occupational risks could become a cornerstone of modern workplace safety
strategies. Due to the safety-critical nature of highway operations, issues of model interpretability,
transparency and ethical use are essential considerations (Jung et al., 2020). As this study focuses on
predictive feasibility the use of models such as SVM and RF enables post-hoc interpretability through
feature importance analysis and decision boundary inspection (Oyedele et al., 2021). Future work will
incorporate formal explainable Al techniques (e.g. SHAP or LIME) alongside ethical validation
frameworks (Mohammed and Kora, 2023) to support fairness, accountability and responsible adoption
in safety-critical environments.

4.1 Practical Implications and Proposed User Interface

In highway operations, accurate prediction of body parts which could potentially be injured is a
significant measure for a learning organisation (Oyedele et al., 2022). Such a prediction will invariably
influence the implementation of preventive measures and could be pertinent in developing tailored
interventions to reduce highway safety injuries. The high accuracy of the ML models presents robust
and effective decision-making tools which will enable safety managers prioritise resources and
implement safety protocol which will significantly minimise injurious incidents. Using ML to analyse
body part injuries in a predictive model could offer insights into the relationship between certain
variables such as environmental, demographic, traffic patterns or location and specific types of injuries
such as spine/back injuries, head trauma etc. A detailed understanding of such relationships enables
proactive measures which facilitate the prevention of such injuries.

By identifying the factors that are most predictive of body-part injuries, the model can help support the
development of targeted safety policies and interventions for highway workers. For example, agencies
could prioritise safety training, equipment allocation and site supervision in locations or conditions
identified as high risk. While these policy recommendations are conceptual at this stage, they illustrate
how predictive insights can contribute to evidence-based occupational safety planning. They can also
inform broader health and safety regulations in high-risk highway environments.

In the highway industry, contractors and subcontractors are often engaged by highway agencies (e.g.
National Highways) to undertake various projects, yet they operate independently of direct oversight by
these agencies (Kshraf et al., 2022; Bortey et al.,, 2025). Consequently, ensuring consistent safety
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standards across all contracted entities poses a challenge, as each contractor may adhere to varying
safety policies and practices (Mbachu, 2008). Nonetheless, insights gained from body part injury
prediction endeavours can be disseminated to contractors, serving as foundational knowledge for the
development of principal safety guidelines applicable to all contractor companies. Relevant
information such as anonymised injury prediction data and best practices could be obtained and can
enhance collaboration between highway industry stakeholders by sharing insights derived from the data
in the bid to improve safety efforts (Deep et al., 2022). Figure 5 gives a representation of the proposed
user interface for the body part prediction.

This representation presents an example of how the user interface of the body part prediction tool would
be designed. As a proof-of-concept, this prediction tool will accept input variables (such as location,
worker profile, weather conditions etc.) through the user interface. The ML algorithm will process the
information and predict the injuries type, specifically, the body parts most likely to be affected in an
injury. A core feature of the user interface is the integration of predictive analytics using a human body
visualisation. This feature will emphasise the vulnerable body parts (e.g., hands, knees, wrists) based
on the modelled risk profile. The tool also offers a descriptive analytics dashboard, which analyses the
data and provides insights into injury distribution across seasons, types of incidents recorded within a
given month, work activity proportions and accident frequency rates (AFR) over time. Future
developments could include the input of leading indicators (Bayramova et al., 2023) to measure the
likelihood (probability) of incidents occurring under various given scenarios and perhaps more
importantly, derived control measures that could be implemented to control the risk(s) posed. The
adoption and use of such as system will enable proactive safety management (Bortey et al., 2024b).
Consequently, the system will provide safety managers (especially non-technical users) data-driven
evidence that inform training, operation scheduling and the deployment of appropriate personal
protective equipment (PPE) (Huang et al., 2018).

[ Welcome To The Highways Safety Risk Prediction App }

J Project Risk Level Possible Body Part Affected

PREDICTIONS

O Select As Applied Incident Type Injury Type

Project Type Vehicle Involved Protect The
(Ccoldenparkrecy v)  (Yes v) Hands
Ankle
Project Location Time Of Day .
nee
( Carriageway A v) ( Morning v)
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C East of St. v) ( Summer v) .
Worker Experience Work On SRN

(3years v) ( Yes v>

DASHBOARD - DESCRIPTIVE ANALYTICS

Age Month

C 32 v) ( July v) Injuries per season Incidents this month
Day Of Week Type Of Person ]‘

(Tuesday v) C Employee v) ﬂ ﬂ H I l m ﬂ m H ‘—I]

Training WeatherMsibiIity Spring Summer Winter Autumn Incurs = near miss injury equipment security
e V) ( Rainy ") Type of work per week Accident Frequency Rate (AFR)
Type Of Work Climbing

(climbing v) (no v)

Chemical Involved

iy
A

Figure 5: Proposed user interface for the body part prediction.
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5 Conclusions

In contemporary times, ML has become an indispensable technique and has proved to be of utmost
significance in curtailing injuries in various fields of occupational health and safety. This paper proposes
a novel computational and ML model for determining body parts likely to be affected in an injurious
incident. Five different algorithms (namely, SVM, RF, NB, EL, RNN) were employed to classify the body
parts. The performance of each model was evaluated and compared based on five metrices (viz.
accuracy score, precision, recall, F1-score and AUROC). The data is balanced using the SMOTE
algorithm to prevent the models from being biased towards the majority class, which can affect
performance accuracy. The parameters of each model are tuned to optimise their performance and
evaluated with a train test split technique which reserves 30% of the data for testing purposes. The
experimental results show that, SVM performed better than the three other ML algorithms i.e. RF, NB
and EL. EL however had a slight advantage over RF and NB because it leveraged the strengths of both
models to achieve a slightly better performance. This study acknowledges overfitting and data leakage
as potential risks. Despite the precautions taken to mitigate such risk, the structured nature of the
dataset and the consolidation of body-part labels may contribute to high accuracy scores. Therefore,
these results should be interpreted as indicative of the model’s feasibility rather than definitive evidence
of deployment readiness.

Consequently, the RNN model although had a competitive performance, was the least performing
algorithm. This was because RNN compared to the other algorithms, is more sensitive to
hyperparameter settings (Farsi, 2021). A limitation of this work is that other different hyperparameters
could have performed better for RNN which were not explored. Future work will explore these other
hyperparameters to ascertain their effectiveness on the model. With the advent of large language
models (LLM), a key limitation of this study is that it did not explore the use LLM for analysing the incident
data. While the study focused on traditional ML techniques for safety risk prediction, LLMs could
enhance the analysis of incidents by extracting deeper insights from unstructured text.

A significant quantity of safety-related data is available in unstructured formats, including incident
reports, maintenance logs and employee feedback however, the traditional ML models used for safety
prediction often rely on structured data. Future research will therefore explore the use of LLMs to
analyse the vast amounts of historical safety reports, identifying key risk factors, trends, and
correlations that may not be immediately evident through traditional statistical methods. It is also
worthy to note that while the proposed framework demonstrates strong predictive capability using real-
world data, it is presented as a proof-of-concept study. This framework is not yet intended for direct
operational deployment. It would require further validation, system integration and stakeholder-led
testing before practical implementation.

A practical implication of accurately predicting body parts which potentially could be injured is the
significant milestone of transforming an organisation into a learning organisation (Oyedele et al., 2022).
Such predictions could influence the implementation of preventive measures and could be pertinentin
developing tailored interventions to reduce highway safety injuries. Future work will further investigate
the performance of the models by validating the model using a stratified k-fold cross validation
technique (Prusty et al., 2022). This will further strengthen the reliability of the model making it more
robust. Moreover, the prediction tool will be tested in practice working in partnership with National
Highways on real life highways projects. Such work will allow new real-life data collected continuously
as incidents occur to further train and refine the prediction tool iteratively but also benchmark health
and safety performance within the organisation. Lessons learnt will not only help the organisation but
also members of their support chain who can benefit from this digital innovation.
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